Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato.
نویسندگان
چکیده
Branched-chain amino acids (BCAAs) are synthesized in plants from branched-chain keto acids, but their metabolism is not completely understood. The interface of BCAA metabolism lies with branched-chain aminotransferases (BCAT) that catalyze both the last anabolic step and the first catabolic step. In this study, six BCAT genes from the cultivated tomato (Solanum lycopersicum) were identified and characterized. SlBCAT1, -2, -3, and -4 are expressed in multiple plant tissues, while SlBCAT5 and -6 were undetectable. SlBCAT1 and -2 are located in the mitochondria, SlBCAT3 and -4 are located in chloroplasts, while SlBCAT5 and -6 are located in the cytosol and vacuole, respectively. SlBCAT1, -2, -3, and -4 were able to restore growth of Escherichia coli BCAA auxotrophic cells, but SlBCAT1 and -2 were less effective than SlBCAT3 and -4 in growth restoration. All enzymes were active in the forward (BCAA synthesis) and reverse (branched-chain keto acid synthesis) reactions. SlBCAT3 and -4 exhibited a preference for the forward reaction, while SlBCAT1 and -2 were more active in the reverse reaction. While overexpression of SlBCAT1 or -3 in tomato fruit did not significantly alter amino acid levels, an expression quantitative trait locus on chromosome 3, associated with substantially higher expression of Solanum pennellii BCAT4, did significantly increase BCAA levels. Conversely, antisense-mediated reduction of SlBCAT1 resulted in higher levels of BCAAs. Together, these results support a model in which the mitochondrial SlBCAT1 and -2 function in BCAA catabolism while the chloroplastic SlBCAT3 and -4 function in BCAA synthesis.
منابع مشابه
Molecular identification of a further branched-chain aminotransferase 7 (BCAT7) in tomato plants.
Although the branched-chain amino acids (BCAAs) are essential components of the mammalian diet, our current understanding of their metabolism in plants is still limited. It is however well known that the branched-chain amino acid transaminases (BCATs) play a crucial role in both the synthesis and degradation of the BCAAs leucine, isoleucine and valine. We previously characterized the BCAT gene ...
متن کاملCharacterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp. cremoris NCDO 763.
In Lactococcus lactis, which is widely used as a starter in the cheese industry, the first step of aromatic and branched-chain amino acid degradation is a transamination which is catalyzed by two major aminotransferases. We have previously purified and characterized biochemically and genetically the aromatic aminotransferase, AraT. In the present study, we purified and studied the second enzyme...
متن کاملBranched chain amino acid aminotransferase of Salmonella typhimurium. II. Kinetic comparison with the enzyme from Salmonella montevideo.
The branched chain ammo acid aminotransferases (transaminase B) of Salmonella typhimurium and Salmonella montevideo have been purified and studied kinetically. The results of partial kinetic characterization of the enzyme support the conclusion that the reaction proceeds via a binary “ping-pang” mechanism. The Michaelis constants for the amino acceptor, cr-ketoglutarate, and three branched chai...
متن کاملEffects of branched-chain amino acid deficiency in diets on growth factors, pancreatic enzymes activity and whole body proximate of Sobaity seabream juvenile (Sparidentex hasta)
On the current study the effects of reducing branched-chain amino acids (BCAA) in diets of Sobaity sea bream in a constant level (40%) on growth and nutritional indices, pancreatic enzymes activity, whole body chemical proximate and amino acids, was assessed. This experiment was conducted in Marine Fish Research Station of Imam Khomeini harbor during July and August of 2014. For these purposes,...
متن کاملEnzymatic method for determination of branched-chain amino acid aminotransferase activity.
A spectrophotometric assay for the determination of branched-chain L-amino acid aminotransferase activity is described. It is based on the transamination of L-leucine in the presence of 2-oxoglutarate yielding 4-methyl-2-oxopentanoate. The rate of formation of the branched-chain 2-oxo acid is specifically monitored in a coupled enzymatic reaction using NAD(+)-dependent D-2-hydroxyisocaproate de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 153 3 شماره
صفحات -
تاریخ انتشار 2010